
Deep Neural Networks
NSES – Lecture

Miroslav Hlaváč



Perceptron

• Mathematical approximation of biological 
neuron

• Weighted sum of inputs and bias

• Followed by activation function



MLP – Multi Layer 
Perceptron

• Basic example of Multi Layer Perceptron

• Input layer

• Hidden layer

• Output layer



Activation Functions

• Linear

• � � � �

• Sigmoid

• � � �
�
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• Hyperbolic Tangent

• � � � tanh��


• Rectified Linear Unit - ReLU

• � � � ����0, �




Error/Loss Function

• Performance metric based on desired and actual output of the network

• The first thing that comes to mind – ����� � ������������� − �������� !�"
• This error has a problem in being negative when the network overshoots and 

positive when it undershoots – absence of real minimum

• It leads us to absolute error - ����� � 	 ������������� − �������� !�"
• This error function has minimal value when both outputs are the same – 0, but 

the training algorithm cannot differentiate between lot of small errors and few 
big errors

• Lets introduce sum of squares of the absolute errors to differentiate between small 
and big errors 

• ����� � 	∑ ������������� − �������� !�"
%



Backpropagation

• The full meaning is “the backward propagation of errors”

• Backpropagation algorithm

• Propagation

• Forward pass to generate network output

• Error calculation

• Backpropagation of errors through the network to generate the difference 
between targeted and actual real values for all outputs and hidden 
neurons

• Weight update



Deep Neural Network

The network is considered deep when it has more than one hidden layer

• Basic example is Input layer + 2 Hidden layers + Output layer

As the computer hardware evolves the number of hidden layers –
complexity of DNNs - is increasing

• A research was done to find a relation between number of hidden layers (parameters) of a 
network and it’s ability to solve complex problems – paper Deep Residual Learning for Image 
Recognition (2015) [ResNet]

• This paper introduced methods to achieve trainable networks with hundreds of layers and 
compared their results on performing the task of image classification



What can we use DNN 
for?

• Computer Vision

• Face identification

• Object recognition

• Speech

• Audio and visual speech recognition

• Text-to-speech

• Dimension reduction

• Alternative to PCA

• Prediction

• Stock exchange predictions



Deep Neural Network Topology

• The hidden layers in DNN can be arranged in different structures

• Most common is the Fully-connected layer

• Different layers are suitable for different tasks 

• There is no exact recipe how to form a network topology for a given task

• DNN can combine forward and recurrent layers, apply regularization and pooling 
after each layer output and many more trick  to improve the ability of the whole 
network to perform a given task better

• Each layer is usually followed by an activation function



Different types of layers



Dense(Fully-connected) 
Layer

• The layer is represented by the number of 
neurons - &

• Each neuron is connected to every neuron in 
the previous layers - '

• The number of outputs is equal to the number 
of neurons 

• Number of weights is & ( '

• This matrix is usually represented as a matrix 
of weights ) and a vector of biases *

• � + � ,�+)- *




Convolutional Layer

• This layer is composed of a set of trainable 
filters

• It is defined by the number of filters, size of 
the filters and the stride in each dimension 
the kernel is moved

• During forward pass the filter is 
slid(convolved) across the input data – (the 
picture represents a 2D example) and 
produces a dot product between the data and 
the weights in the filter

• The output is a stack of activation maps 
produced by the filters



Recurrent Layer

• Implemented as a set of recurrent units(cells)

• Types of cells:

• Simple RNN – classical recurrent network

• Gated Recurrent Unit (GRU) – implements reset 
gate

• LSTM – implements input, output, and forget gate

• Convolutional LSTM – input and recurrent 
transformations are implemented as convolutions



Pooling Layers

• Pooling is a process with no trainable 
parameters

• Rectangular window is slid over the data to 
compute:

• Average 

• Maximum

• Etc.…



Response Normalization

• Simulates biological concept of lateral 
inhibition

• Capacity of excited neuron to outweigh 
the activity of neighbors

• Batch Normalization

• Normalizes the outputs of the connected 
layer to have zero mean/unit variance

• Dropout

• Sets the output of randomly selected 
outputs to zero



Classification Layer

• Softmax

• Defined by a function
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• This function transforms the input vector to values between 0; 1 and their 
sum to be one

• Used for classification tasks

• Output values . / 0 correspond to probabilities of  the input to belong to the 

class 9

• Targets for the training are so called one-hot-vectors



Learning Objective

• Two types of objectives are currently used in DNN

• Classification

• Finding the probability that a given input belongs to a certain class

• For classification with softmax we use categorical cross-entropy

• : �, ; � −∑ � � log ;��
?

• Where � is the index of a class, � is the distribution(one-hot-vector), and ;	is the 
approximated distribution (softmax)

• Regression

• Approximation of the desired output given some input values

• Mean Squared Error(MSE)/ RMSE

• Mean Absolute Error

• Hinge Loss : @, @A �
�

B
∑ max�1 − E� ∙ E�G , 0
�



Optimization – Training 
the Network

• Variations to the basic algorithm of Gradient 
Descent(GD)

• Because the computer memory is limited and we 
can’t always fit all the training data into memory

• Batch GD

• Computes the error for each sample but the 
update is done after the whole training set

• Stochastic GD

• Updates are done after evaluating each sample in 
the training set

• Mini-Batch GD



Optimization – Mini-Batch Gradient Descent

• Most commonly used implementation

• Splits the dataset into small batches

• The errors and gradients are calculated for each sample in the batch

• No need to keep all the data in memory, just the batch

• Hyperparameters

• Learning rate

• Batch size

• Learning rate decay



Optimization – Tricks to 
improve the convergence of 
GD

• Selection of initial value of learning 
rate is very important for 
convergence of GD

• Learning rate decay

• Progressive

• Step



Optimization – Tricks to 
improve the convergence of 
GD

• H �� � H − I∇:�H 


• Momentum

• Nesterov Momentum

• Weight decay

• H �� � H − I∇: H − IKH 



Optimization – Adagrad

• Adapts the learning rate to the parameters

• Smaller updates to frequent features

• Larger updates to infrequent features

• The learning rate is updated based on a sum of past gradients computed for each 
parameter separately

• Eliminates the need for selecting the starting learning rate

• The problem of the cumulative sum is it will grow indefinitely during the training 
process effectively shrinking the learning rate to zero



Optimization – RMSprop and Adadelta

• Developed simultaneously to solve the problem of diminishing learning rate of 
Adagrad

• Adadelta takes only selected window of past gradients into account

• Implemented as decaying average of past squared gradients

• Solves the difference between hypothetical units of updates and parameters 
by approximating as the running average of previous updates

• RMSprop

• Same update as Adadelta but neglects the difference in units

• Not published in any paper, proposed in a Lecture on Cursera



Optimization – Adam

• Adaptive Moment Estimation

• Computes adaptive learning rate for each parameter 

• In addition to Adadelta stores also the exponentially decaying average of past 
gradients, similar to momentum 



Comparison of GD extensions



Deep Neural Network

• Main problems during training of DNN

• Gradient vanishing and gradient explosion

• The backpropagation algorithm updates the consecutive weights 
proportionally to the partial derivative of the error function

• Overfitting

• Very good result on training data, bad results on testing data

• Degradation

• Despite increasing the number of layers the training accuracy is lowering



Data augmentation

• The more parameters the network has the more data it will need to train itself for 
a given task

• Data resources are still limited or protected by law

• For example medical images

• If we have only limited number of data we can increase the number by 
performing augmentations

• Generally we can add noise with zero mean and variation of one

• For images we can add rotation, translation, etc..

• This will also make the network more robust to variations in testing data



Data augmentation

• General augmentations:

• Additional Gaussian Noise

• Typical types of augmentations for images:

• Flip

• Rotation

• Scale

• Crop

• Translation



Programing your own DNN

• Frameworks

• Tensorflow – Developed by Google

• Caffe 

• Torch - PyTorch

• CNTK – Developed by Microsoft

• Chainer

• Hi-level API

• Keras



Keras

• High level API for neural networks

• Written in Python

• Easy and fast 

• Supports all currently used types of layers 

• Possibility to create own layers

• Utilizes both CPU and GPU for computations

• www.keras.io



Simple examples from Keras

• MLP – definition

model = Sequential() 

model.add(Dense(64, activation='relu', input_dim=20)) 
model.add(Dropout(0.5))

model.add(Dense(10, activation='softmax’)) 

• MLP – optimizer 

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, 
nesterov=True)



Simple examples from Keras

• MLP – compilation

model.compile(loss='categorical_crossentropy', 
optimizer=sgd, metrics=['accuracy'])

• MLP – training

model.fit(x_train, y_train, epochs=20, batch_size=128)

• MLP – evaluation

score = model.evaluate(x_test, y_test, batch_size=128)


